MakeItFrom.com
Menu (ESC)

1080A Aluminum vs. S21460 Stainless Steel

1080A aluminum belongs to the aluminum alloys classification, while S21460 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1080A aluminum and the bottom bar is S21460 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 18 to 40
250
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 2.3 to 34
46
Fatigue Strength, MPa 18 to 50
390
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 49 to 81
580
Tensile Strength: Ultimate (UTS), MPa 74 to 140
830
Tensile Strength: Yield (Proof), MPa 17 to 120
430

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 170
920
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 640
1330
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 23
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 160
43
Embodied Water, L/kg 1200
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1 to 19
320
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 7.6 to 15
30
Strength to Weight: Bending, points 14 to 22
26
Thermal Shock Resistance, points 3.3 to 6.4
17

Alloy Composition

Aluminum (Al), % 99.8 to 100
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0 to 0.030
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.15
57.3 to 63.7
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
14 to 16
Nickel (Ni), % 0
5.0 to 6.0
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.060
0