MakeItFrom.com
Menu (ESC)

1085 Aluminum vs. EN 1.5680 Steel

1085 aluminum belongs to the aluminum alloys classification, while EN 1.5680 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1085 aluminum and the bottom bar is EN 1.5680 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 39
23
Fatigue Strength, MPa 22 to 49
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 48 to 79
390
Tensile Strength: Ultimate (UTS), MPa 73 to 140
620
Tensile Strength: Yield (Proof), MPa 17 to 120
440

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 640
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
48
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 200
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
5.0
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.9
Embodied Energy, MJ/kg 160
26
Embodied Water, L/kg 1200
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 21
130
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 110
510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 7.5 to 14
22
Strength to Weight: Bending, points 14 to 22
20
Thermal Diffusivity, mm2/s 94
13
Thermal Shock Resistance, points 3.3 to 6.1
18

Alloy Composition

Aluminum (Al), % 99.85 to 100
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 0 to 0.030
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.12
93.4 to 95
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
0.3 to 0.8
Nickel (Ni), % 0
4.8 to 5.3
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.35
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.020
0
Vanadium (V), % 0 to 0.050
0 to 0.050
Zinc (Zn), % 0 to 0.030
0
Residuals, % 0 to 0.010
0