MakeItFrom.com
Menu (ESC)

1085 Aluminum vs. N08330 Stainless Steel

1085 aluminum belongs to the aluminum alloys classification, while N08330 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1085 aluminum and the bottom bar is N08330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 39
34
Fatigue Strength, MPa 22 to 49
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 48 to 79
360
Tensile Strength: Ultimate (UTS), MPa 73 to 140
550
Tensile Strength: Yield (Proof), MPa 17 to 120
230

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
1050
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 640
1340
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 200
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.3
5.4
Embodied Energy, MJ/kg 160
77
Embodied Water, L/kg 1200
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 21
150
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 110
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 7.5 to 14
19
Strength to Weight: Bending, points 14 to 22
18
Thermal Diffusivity, mm2/s 94
3.1
Thermal Shock Resistance, points 3.3 to 6.1
13

Alloy Composition

Aluminum (Al), % 99.85 to 100
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 0 to 0.030
0 to 1.0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.12
38.3 to 48.3
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
0 to 2.0
Nickel (Ni), % 0
34 to 37
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0.75 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.020
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.030
0
Residuals, % 0 to 0.010
0