MakeItFrom.com
Menu (ESC)

1085 Aluminum vs. S13800 Stainless Steel

1085 aluminum belongs to the aluminum alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1085 aluminum and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 39
11 to 18
Fatigue Strength, MPa 22 to 49
410 to 870
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 48 to 79
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 73 to 140
980 to 1730
Tensile Strength: Yield (Proof), MPa 17 to 120
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 170
810
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 640
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
16
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 200
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
3.4
Embodied Energy, MJ/kg 160
46
Embodied Water, L/kg 1200
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 21
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 110
1090 to 5490
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 7.5 to 14
35 to 61
Strength to Weight: Bending, points 14 to 22
28 to 41
Thermal Diffusivity, mm2/s 94
4.3
Thermal Shock Resistance, points 3.3 to 6.1
33 to 58

Alloy Composition

Aluminum (Al), % 99.85 to 100
0.9 to 1.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 0 to 0.030
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.12
73.6 to 77.3
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.1
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Titanium (Ti), % 0 to 0.020
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.030
0
Residuals, % 0 to 0.010
0