MakeItFrom.com
Menu (ESC)

1100 Aluminum vs. EN AC-43400 Aluminum

Both 1100 aluminum and EN AC-43400 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 1100 aluminum and the bottom bar is EN AC-43400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
72
Elongation at Break, % 1.1 to 32
1.1
Fatigue Strength, MPa 32 to 71
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 86 to 170
270
Tensile Strength: Yield (Proof), MPa 28 to 150
160

Thermal Properties

Latent Heat of Fusion, J/g 400
540
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 660
600
Melting Onset (Solidus), °C 640
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 220
140
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 59
32
Electrical Conductivity: Equal Weight (Specific), % IACS 190
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.2
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.76 to 52
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 5.7 to 170
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
54
Strength to Weight: Axial, points 8.7 to 17
29
Strength to Weight: Bending, points 16 to 25
36
Thermal Diffusivity, mm2/s 90
59
Thermal Shock Resistance, points 3.7 to 7.4
12

Alloy Composition

Aluminum (Al), % 99 to 99.95
86 to 90.8
Copper (Cu), % 0.050 to 0.2
0 to 0.1
Iron (Fe), % 0 to 1.0
0 to 1.0
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 0.050
0 to 0.55
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 0 to 1.0
9.0 to 11
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.15
Residuals, % 0
0 to 0.15