MakeItFrom.com
Menu (ESC)

1100 Aluminum vs. EN AC-46400 Aluminum

Both 1100 aluminum and EN AC-46400 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 1100 aluminum and the bottom bar is EN AC-46400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
72
Elongation at Break, % 1.1 to 32
1.1 to 1.7
Fatigue Strength, MPa 32 to 71
75 to 85
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 86 to 170
170 to 310
Tensile Strength: Yield (Proof), MPa 28 to 150
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 400
520
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 660
610
Melting Onset (Solidus), °C 640
570
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 220
130
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 59
33
Electrical Conductivity: Equal Weight (Specific), % IACS 190
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.2
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.76 to 52
1.7 to 4.9
Resilience: Unit (Modulus of Resilience), kJ/m3 5.7 to 170
82 to 500
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
52
Strength to Weight: Axial, points 8.7 to 17
18 to 32
Strength to Weight: Bending, points 16 to 25
26 to 38
Thermal Diffusivity, mm2/s 90
55
Thermal Shock Resistance, points 3.7 to 7.4
7.8 to 14

Alloy Composition

Aluminum (Al), % 99 to 99.95
85.4 to 90.5
Copper (Cu), % 0.050 to 0.2
0.8 to 1.3
Iron (Fe), % 0 to 1.0
0 to 0.8
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0 to 0.050
0.15 to 0.55
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0 to 1.0
8.3 to 9.7
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.8
Residuals, % 0
0 to 0.25