MakeItFrom.com
Menu (ESC)

1100 Aluminum vs. C91700 Bronze

1100 aluminum belongs to the aluminum alloys classification, while C91700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1100 aluminum and the bottom bar is C91700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 1.1 to 32
13
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 86 to 170
330
Tensile Strength: Yield (Proof), MPa 28 to 150
170

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 660
1020
Melting Onset (Solidus), °C 640
850
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 220
71
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 59
10
Electrical Conductivity: Equal Weight (Specific), % IACS 190
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
36
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.2
3.9
Embodied Energy, MJ/kg 150
63
Embodied Water, L/kg 1190
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.76 to 52
35
Resilience: Unit (Modulus of Resilience), kJ/m3 5.7 to 170
140
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 8.7 to 17
11
Strength to Weight: Bending, points 16 to 25
12
Thermal Diffusivity, mm2/s 90
22
Thermal Shock Resistance, points 3.7 to 7.4
12

Alloy Composition

Aluminum (Al), % 99 to 99.95
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0.050 to 0.2
84.2 to 87.5
Iron (Fe), % 0 to 1.0
0 to 0.2
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0
1.2 to 2.0
Phosphorus (P), % 0
0 to 0.3
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
11.3 to 12.5
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0 to 0.15
0