MakeItFrom.com
Menu (ESC)

1100 Aluminum vs. S21460 Stainless Steel

1100 aluminum belongs to the aluminum alloys classification, while S21460 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1100 aluminum and the bottom bar is S21460 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 1.1 to 32
46
Fatigue Strength, MPa 32 to 71
390
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 54 to 95
580
Tensile Strength: Ultimate (UTS), MPa 86 to 170
830
Tensile Strength: Yield (Proof), MPa 28 to 150
430

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 180
920
Melting Completion (Liquidus), °C 660
1380
Melting Onset (Solidus), °C 640
1330
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 24
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
14
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.2
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1190
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.76 to 52
320
Resilience: Unit (Modulus of Resilience), kJ/m3 5.7 to 170
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 8.7 to 17
30
Strength to Weight: Bending, points 16 to 25
26
Thermal Shock Resistance, points 3.7 to 7.4
17

Alloy Composition

Aluminum (Al), % 99 to 99.95
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0.050 to 0.2
0
Iron (Fe), % 0 to 1.0
57.3 to 63.7
Manganese (Mn), % 0 to 0.050
14 to 16
Nickel (Ni), % 0
5.0 to 6.0
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0