MakeItFrom.com
Menu (ESC)

1100-O Aluminum vs. 8011A Aluminum

Both 1100-O aluminum and 8011A aluminum are aluminum alloys. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 1100-O aluminum and the bottom bar is 8011A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 23
25 to 50
Elastic (Young's, Tensile) Modulus, GPa 69
69
Elongation at Break, % 32
1.7 to 28
Fatigue Strength, MPa 35
33 to 76
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 88
100 to 180
Tensile Strength: Yield (Proof), MPa 29
34 to 170

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 660
650
Melting Onset (Solidus), °C 640
630
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 220
210
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 59
56
Electrical Conductivity: Equal Weight (Specific), % IACS 190
180

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.0
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
3.0 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 6.1
8.2 to 200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 9.0
11 to 18
Strength to Weight: Bending, points 16
18 to 26
Thermal Diffusivity, mm2/s 90
86
Thermal Shock Resistance, points 3.9
4.6 to 8.1

Alloy Composition

Aluminum (Al), % 99 to 99.95
97.5 to 99.1
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0.050 to 0.2
0 to 0.1
Iron (Fe), % 0 to 1.0
0.5 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.050
0 to 0.1
Silicon (Si), % 0 to 1.0
0.4 to 0.8
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0
0 to 0.15