MakeItFrom.com
Menu (ESC)

1100A Aluminum vs. 6065 Aluminum

Both 1100A aluminum and 6065 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common.

For each property being compared, the top bar is 1100A aluminum and the bottom bar is 6065 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
68
Elongation at Break, % 4.5 to 34
4.5 to 11
Fatigue Strength, MPa 35 to 74
96 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 59 to 99
190 to 230
Tensile Strength: Ultimate (UTS), MPa 89 to 170
310 to 400
Tensile Strength: Yield (Proof), MPa 29 to 150
270 to 380

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 640
590
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 230
170
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
43
Electrical Conductivity: Equal Weight (Specific), % IACS 200
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.2
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 23
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 5.9 to 150
540 to 1040
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
49
Strength to Weight: Axial, points 9.1 to 17
31 to 40
Strength to Weight: Bending, points 16 to 25
36 to 43
Thermal Diffusivity, mm2/s 93
67
Thermal Shock Resistance, points 4.0 to 7.6
14 to 18

Alloy Composition

Aluminum (Al), % 99 to 100
94.4 to 98.2
Bismuth (Bi), % 0
0.5 to 1.5
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0.050 to 0.2
0.15 to 0.4
Iron (Fe), % 0 to 1.0
0 to 0.7
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0 to 0.1
0.8 to 1.2
Manganese (Mn), % 0 to 0.050
0 to 0.15
Silicon (Si), % 0 to 1.0
0.4 to 0.8
Titanium (Ti), % 0 to 0.1
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.25
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15