MakeItFrom.com
Menu (ESC)

1100A Aluminum vs. ASTM Grade HN Steel

1100A aluminum belongs to the aluminum alloys classification, while ASTM grade HN steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1100A aluminum and the bottom bar is ASTM grade HN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 4.5 to 34
9.0
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 89 to 170
500

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
1080
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 640
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
13
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.2
4.6
Embodied Energy, MJ/kg 150
66
Embodied Water, L/kg 1190
180

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 9.1 to 17
17
Strength to Weight: Bending, points 16 to 25
18
Thermal Diffusivity, mm2/s 93
3.5
Thermal Shock Resistance, points 4.0 to 7.6
11

Alloy Composition

Aluminum (Al), % 99 to 100
0
Carbon (C), % 0
0.2 to 0.5
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 0.050 to 0.2
0
Iron (Fe), % 0 to 1.0
44.9 to 57.8
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
23 to 27
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0