MakeItFrom.com
Menu (ESC)

1100A Aluminum vs. EN 1.7077 Steel

1100A aluminum belongs to the aluminum alloys classification, while EN 1.7077 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1100A aluminum and the bottom bar is EN 1.7077 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 89 to 170
490 to 1750

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 640
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
45
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 200
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.3
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1190
51

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 9.1 to 17
17 to 62
Strength to Weight: Bending, points 16 to 25
18 to 41
Thermal Diffusivity, mm2/s 93
12
Thermal Shock Resistance, points 4.0 to 7.6
14 to 51

Alloy Composition

Aluminum (Al), % 99 to 100
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.34 to 0.38
Chromium (Cr), % 0
0.9 to 1.2
Copper (Cu), % 0.050 to 0.2
0 to 0.25
Iron (Fe), % 0 to 1.0
96.8 to 98.1
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.050
0.7 to 1.0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0