MakeItFrom.com
Menu (ESC)

1100A Aluminum vs. EN 1.8201 Steel

1100A aluminum belongs to the aluminum alloys classification, while EN 1.8201 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1100A aluminum and the bottom bar is EN 1.8201 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 4.5 to 34
20
Fatigue Strength, MPa 35 to 74
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 59 to 99
390
Tensile Strength: Ultimate (UTS), MPa 89 to 170
630
Tensile Strength: Yield (Proof), MPa 29 to 150
450

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
450
Melting Completion (Liquidus), °C 640
1500
Melting Onset (Solidus), °C 640
1450
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 200
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.2
2.5
Embodied Energy, MJ/kg 150
36
Embodied Water, L/kg 1190
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 23
110
Resilience: Unit (Modulus of Resilience), kJ/m3 5.9 to 150
530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 9.1 to 17
22
Strength to Weight: Bending, points 16 to 25
20
Thermal Diffusivity, mm2/s 93
11
Thermal Shock Resistance, points 4.0 to 7.6
18

Alloy Composition

Aluminum (Al), % 99 to 100
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
1.9 to 2.6
Copper (Cu), % 0.050 to 0.2
0
Iron (Fe), % 0 to 1.0
93.6 to 96.2
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.050
0.1 to 0.6
Molybdenum (Mo), % 0
0.050 to 0.3
Niobium (Nb), % 0
0.020 to 0.080
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0.0050 to 0.060
Tungsten (W), % 0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0