MakeItFrom.com
Menu (ESC)

1100A Aluminum vs. N07752 Nickel

1100A aluminum belongs to the aluminum alloys classification, while N07752 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1100A aluminum and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 4.5 to 34
22
Fatigue Strength, MPa 35 to 74
450
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 59 to 99
710
Tensile Strength: Ultimate (UTS), MPa 89 to 170
1120
Tensile Strength: Yield (Proof), MPa 29 to 150
740

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 640
1330
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 230
13
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 200
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.2
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 23
220
Resilience: Unit (Modulus of Resilience), kJ/m3 5.9 to 150
1450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 9.1 to 17
37
Strength to Weight: Bending, points 16 to 25
29
Thermal Diffusivity, mm2/s 93
3.2
Thermal Shock Resistance, points 4.0 to 7.6
34

Alloy Composition

Aluminum (Al), % 99 to 100
0.4 to 1.0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0.050 to 0.2
0 to 0.5
Iron (Fe), % 0 to 1.0
5.0 to 9.0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Nickel (Ni), % 0
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.0080
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Titanium (Ti), % 0 to 0.1
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.050
Residuals, % 0 to 0.15
0