MakeItFrom.com
Menu (ESC)

1100A Aluminum vs. R58150 Titanium

1100A aluminum belongs to the aluminum alloys classification, while R58150 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 1100A aluminum and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
140
Elongation at Break, % 4.5 to 34
13
Fatigue Strength, MPa 35 to 74
330
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
52
Shear Strength, MPa 59 to 99
470
Tensile Strength: Ultimate (UTS), MPa 89 to 170
770
Tensile Strength: Yield (Proof), MPa 29 to 150
550

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 170
320
Melting Completion (Liquidus), °C 640
1760
Melting Onset (Solidus), °C 640
1700
Specific Heat Capacity, J/kg-K 900
500
Thermal Expansion, µm/m-K 23
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
48
Density, g/cm3 2.7
5.4
Embodied Carbon, kg CO2/kg material 8.2
31
Embodied Energy, MJ/kg 150
480
Embodied Water, L/kg 1190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 23
94
Resilience: Unit (Modulus of Resilience), kJ/m3 5.9 to 150
1110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
32
Strength to Weight: Axial, points 9.1 to 17
40
Strength to Weight: Bending, points 16 to 25
35
Thermal Shock Resistance, points 4.0 to 7.6
48

Alloy Composition

Aluminum (Al), % 99 to 100
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 0.050 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.0
0 to 0.1
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.050
0
Molybdenum (Mo), % 0
14 to 16
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 1.0
0
Titanium (Ti), % 0 to 0.1
83.5 to 86
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0