MakeItFrom.com
Menu (ESC)

1200 Aluminum vs. ASTM A369 Grade FP92

1200 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP92 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1200 aluminum and the bottom bar is ASTM A369 grade FP92.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 23 to 48
210
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 1.1 to 28
19
Fatigue Strength, MPa 25 to 69
330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 54 to 100
440
Tensile Strength: Ultimate (UTS), MPa 85 to 180
710
Tensile Strength: Yield (Proof), MPa 28 to 160
490

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 170
590
Melting Completion (Liquidus), °C 660
1490
Melting Onset (Solidus), °C 650
1450
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
26
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 190
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
11
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.2
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1190
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0 to 19
120
Resilience: Unit (Modulus of Resilience), kJ/m3 5.7 to 180
620
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 8.7 to 19
25
Strength to Weight: Bending, points 16 to 26
22
Thermal Diffusivity, mm2/s 92
6.9
Thermal Shock Resistance, points 3.8 to 8.1
19

Alloy Composition

Aluminum (Al), % 99 to 100
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
8.5 to 9.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 1.0
85.8 to 89.1
Manganese (Mn), % 0 to 0.050
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.050
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.15
0