MakeItFrom.com
Menu (ESC)

1200 Aluminum vs. AWS ERNiCrFe-6

1200 aluminum belongs to the aluminum alloys classification, while AWS ERNiCrFe-6 belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1200 aluminum and the bottom bar is AWS ERNiCrFe-6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 1.1 to 28
34
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 85 to 180
630

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Melting Completion (Liquidus), °C 660
1370
Melting Onset (Solidus), °C 650
1320
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 230
13
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 190
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
55
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.2
9.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1190
260

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 8.7 to 19
21
Strength to Weight: Bending, points 16 to 26
19
Thermal Diffusivity, mm2/s 92
3.3
Thermal Shock Resistance, points 3.8 to 8.1
19

Alloy Composition

Aluminum (Al), % 99 to 100
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 0 to 0.050
0 to 0.5
Iron (Fe), % 0 to 1.0
0 to 8.0
Manganese (Mn), % 0 to 0.050
2.0 to 2.7
Nickel (Ni), % 0
67 to 81.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.050
2.5 to 3.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5