MakeItFrom.com
Menu (ESC)

1200 Aluminum vs. EN 1.4652 Stainless Steel

1200 aluminum belongs to the aluminum alloys classification, while EN 1.4652 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1200 aluminum and the bottom bar is EN 1.4652 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 23 to 48
270
Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 1.1 to 28
45
Fatigue Strength, MPa 25 to 69
450
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 54 to 100
610
Tensile Strength: Ultimate (UTS), MPa 85 to 180
880
Tensile Strength: Yield (Proof), MPa 28 to 160
490

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 650
1410
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 230
9.8
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 190
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
34
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.2
6.4
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1190
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0 to 19
340
Resilience: Unit (Modulus of Resilience), kJ/m3 5.7 to 180
570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 8.7 to 19
30
Strength to Weight: Bending, points 16 to 26
25
Thermal Diffusivity, mm2/s 92
2.6
Thermal Shock Resistance, points 3.8 to 8.1
20

Alloy Composition

Aluminum (Al), % 99 to 100
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 0 to 0.050
0.3 to 0.6
Iron (Fe), % 0 to 1.0
38.3 to 46.3
Manganese (Mn), % 0 to 0.050
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0
0.45 to 0.55
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0