MakeItFrom.com
Menu (ESC)

1200 Aluminum vs. EN AC-47000 Aluminum

Both 1200 aluminum and EN AC-47000 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 1200 aluminum and the bottom bar is EN AC-47000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 23 to 48
60
Elastic (Young's, Tensile) Modulus, GPa 69
73
Elongation at Break, % 1.1 to 28
1.7
Fatigue Strength, MPa 25 to 69
68
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 85 to 180
180
Tensile Strength: Yield (Proof), MPa 28 to 160
97

Thermal Properties

Latent Heat of Fusion, J/g 400
570
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 660
590
Melting Onset (Solidus), °C 650
570
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 230
130
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58
33
Electrical Conductivity: Equal Weight (Specific), % IACS 190
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.2
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1190
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0 to 19
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 5.7 to 180
65
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 50
54
Strength to Weight: Axial, points 8.7 to 19
19
Strength to Weight: Bending, points 16 to 26
27
Thermal Diffusivity, mm2/s 92
55
Thermal Shock Resistance, points 3.8 to 8.1
8.3

Alloy Composition

Aluminum (Al), % 99 to 100
82.1 to 89.5
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.050
0 to 1.0
Iron (Fe), % 0 to 1.0
0 to 0.8
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 0 to 0.050
0.050 to 0.55
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0 to 1.0
10.5 to 13.5
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.050
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.55
Residuals, % 0
0 to 0.25