MakeItFrom.com
Menu (ESC)

1200 Aluminum vs. R58150 Titanium

1200 aluminum belongs to the aluminum alloys classification, while R58150 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is 1200 aluminum and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
140
Elongation at Break, % 1.1 to 28
13
Fatigue Strength, MPa 25 to 69
330
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
52
Shear Strength, MPa 54 to 100
470
Tensile Strength: Ultimate (UTS), MPa 85 to 180
770
Tensile Strength: Yield (Proof), MPa 28 to 160
550

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 170
320
Melting Completion (Liquidus), °C 660
1760
Melting Onset (Solidus), °C 650
1700
Specific Heat Capacity, J/kg-K 900
500
Thermal Expansion, µm/m-K 23
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
48
Density, g/cm3 2.7
5.4
Embodied Carbon, kg CO2/kg material 8.2
31
Embodied Energy, MJ/kg 150
480
Embodied Water, L/kg 1190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0 to 19
94
Resilience: Unit (Modulus of Resilience), kJ/m3 5.7 to 180
1110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
32
Strength to Weight: Axial, points 8.7 to 19
40
Strength to Weight: Bending, points 16 to 26
35
Thermal Shock Resistance, points 3.8 to 8.1
48

Alloy Composition

Aluminum (Al), % 99 to 100
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 0 to 0.050
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.0
0 to 0.1
Manganese (Mn), % 0 to 0.050
0
Molybdenum (Mo), % 0
14 to 16
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 1.0
0
Titanium (Ti), % 0 to 0.050
83.5 to 86
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0