MakeItFrom.com
Menu (ESC)

1230A Aluminum vs. EN 2.4668 Nickel

1230A aluminum belongs to the aluminum alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1230A aluminum and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 4.5 to 34
14
Fatigue Strength, MPa 35 to 74
590
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
75
Shear Strength, MPa 59 to 99
840
Tensile Strength: Ultimate (UTS), MPa 89 to 170
1390
Tensile Strength: Yield (Proof), MPa 29 to 150
1160

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 640
1410
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 230
13
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 200
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
75
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.2
13
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1190
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 23
180
Resilience: Unit (Modulus of Resilience), kJ/m3 5.9 to 150
3490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 9.1 to 17
46
Strength to Weight: Bending, points 16 to 25
33
Thermal Diffusivity, mm2/s 93
3.5
Thermal Shock Resistance, points 4.0 to 7.6
40

Alloy Composition

Aluminum (Al), % 99.3 to 100
0.3 to 0.7
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0
0.020 to 0.080
Chromium (Cr), % 0
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.7
11.2 to 24.6
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.7
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.6 to 1.2
Zinc (Zn), % 0 to 0.050
0