MakeItFrom.com
Menu (ESC)

1230A Aluminum vs. C64210 Bronze

1230A aluminum belongs to the aluminum alloys classification, while C64210 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1230A aluminum and the bottom bar is C64210 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 4.5 to 34
35
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
42
Shear Strength, MPa 59 to 99
380
Tensile Strength: Ultimate (UTS), MPa 89 to 170
570
Tensile Strength: Yield (Proof), MPa 29 to 150
290

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 640
1040
Melting Onset (Solidus), °C 640
990
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 230
48
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
13
Electrical Conductivity: Equal Weight (Specific), % IACS 200
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
29
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.2
3.0
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1190
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 23
170
Resilience: Unit (Modulus of Resilience), kJ/m3 5.9 to 150
360
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 9.1 to 17
19
Strength to Weight: Bending, points 16 to 25
18
Thermal Diffusivity, mm2/s 93
13
Thermal Shock Resistance, points 4.0 to 7.6
21

Alloy Composition

Aluminum (Al), % 99.3 to 100
6.3 to 7.0
Arsenic (As), % 0
0 to 0.15
Copper (Cu), % 0 to 0.1
89 to 92.2
Iron (Fe), % 0 to 0.7
0 to 0.3
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 0.1
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0 to 0.7
1.5 to 2.0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.050
0 to 0.5
Residuals, % 0
0 to 0.5