MakeItFrom.com
Menu (ESC)

1235 Aluminum vs. 328.0 Aluminum

Both 1235 aluminum and 328.0 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 1235 aluminum and the bottom bar is 328.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
72
Elongation at Break, % 28 to 34
1.6 to 2.1
Fatigue Strength, MPa 23 to 58
55 to 80
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 80 to 84
200 to 270
Tensile Strength: Yield (Proof), MPa 23 to 57
120 to 170

Thermal Properties

Latent Heat of Fusion, J/g 400
510
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 640
620
Melting Onset (Solidus), °C 640
560
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 230
120
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
30
Electrical Conductivity: Equal Weight (Specific), % IACS 200
99

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
7.8
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1190
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 25
2.8 to 5.0
Resilience: Unit (Modulus of Resilience), kJ/m3 3.8 to 24
92 to 200
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 8.2 to 8.6
21 to 28
Strength to Weight: Bending, points 15 to 16
28 to 34
Thermal Diffusivity, mm2/s 93
50
Thermal Shock Resistance, points 3.6 to 3.7
9.2 to 12

Alloy Composition

Aluminum (Al), % 99.35 to 100
84.5 to 91.1
Chromium (Cr), % 0
0 to 0.35
Copper (Cu), % 0 to 0.050
1.0 to 2.0
Iron (Fe), % 0 to 0.65
0 to 1.0
Magnesium (Mg), % 0 to 0.050
0.2 to 0.6
Manganese (Mn), % 0 to 0.050
0.2 to 0.6
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0 to 0.65
7.5 to 8.5
Titanium (Ti), % 0 to 0.060
0 to 0.25
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.1
0 to 1.5
Residuals, % 0
0 to 0.5