MakeItFrom.com
Menu (ESC)

1235 Aluminum vs. 4004 Aluminum

Both 1235 aluminum and 4004 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 1235 aluminum and the bottom bar is 4004 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 28 to 34
2.4
Fatigue Strength, MPa 23 to 58
42
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 52 to 56
63
Tensile Strength: Ultimate (UTS), MPa 80 to 84
110
Tensile Strength: Yield (Proof), MPa 23 to 57
60

Thermal Properties

Latent Heat of Fusion, J/g 400
540
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 640
560
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 230
130
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
33
Electrical Conductivity: Equal Weight (Specific), % IACS 200
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1190
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 25
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 3.8 to 24
25
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
54
Strength to Weight: Axial, points 8.2 to 8.6
12
Strength to Weight: Bending, points 15 to 16
20
Thermal Diffusivity, mm2/s 93
58
Thermal Shock Resistance, points 3.6 to 3.7
5.1

Alloy Composition

Aluminum (Al), % 99.35 to 100
86 to 90
Copper (Cu), % 0 to 0.050
0 to 0.25
Iron (Fe), % 0 to 0.65
0 to 0.8
Magnesium (Mg), % 0 to 0.050
1.0 to 2.0
Manganese (Mn), % 0 to 0.050
0 to 0.1
Silicon (Si), % 0 to 0.65
9.0 to 10.5
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.1
0 to 0.2
Residuals, % 0
0 to 0.15