MakeItFrom.com
Menu (ESC)

1235 Aluminum vs. ACI-ASTM CN7M Steel

1235 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CN7M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1235 aluminum and the bottom bar is ACI-ASTM CN7M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 28 to 34
44
Fatigue Strength, MPa 23 to 58
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 80 to 84
480
Tensile Strength: Yield (Proof), MPa 23 to 57
200

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 640
1450
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
21
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 200
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.3
5.6
Embodied Energy, MJ/kg 160
78
Embodied Water, L/kg 1190
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 25
170
Resilience: Unit (Modulus of Resilience), kJ/m3 3.8 to 24
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 8.2 to 8.6
17
Strength to Weight: Bending, points 15 to 16
17
Thermal Diffusivity, mm2/s 93
5.6
Thermal Shock Resistance, points 3.6 to 3.7
12

Alloy Composition

Aluminum (Al), % 99.35 to 100
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 0 to 0.050
3.0 to 4.0
Iron (Fe), % 0 to 0.65
37.4 to 48.5
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
27.5 to 30.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.65
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.1
0