MakeItFrom.com
Menu (ESC)

1235 Aluminum vs. EN 1.4951 Stainless Steel

1235 aluminum belongs to the aluminum alloys classification, while EN 1.4951 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1235 aluminum and the bottom bar is EN 1.4951 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 28 to 34
38
Fatigue Strength, MPa 23 to 58
190
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Shear Strength, MPa 52 to 56
430
Tensile Strength: Ultimate (UTS), MPa 80 to 84
630
Tensile Strength: Yield (Proof), MPa 23 to 57
220

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 640
1360
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 200
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
4.3
Embodied Energy, MJ/kg 160
61
Embodied Water, L/kg 1190
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 25
190
Resilience: Unit (Modulus of Resilience), kJ/m3 3.8 to 24
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 8.2 to 8.6
22
Strength to Weight: Bending, points 15 to 16
21
Thermal Diffusivity, mm2/s 93
3.9
Thermal Shock Resistance, points 3.6 to 3.7
14

Alloy Composition

Aluminum (Al), % 99.35 to 100
0
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.65
49.1 to 57
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Nickel (Ni), % 0
19 to 22
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.65
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.1
0