MakeItFrom.com
Menu (ESC)

1235 Aluminum vs. EN AC-51100 Aluminum

Both 1235 aluminum and EN AC-51100 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 1235 aluminum and the bottom bar is EN AC-51100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
68
Elongation at Break, % 28 to 34
4.5
Fatigue Strength, MPa 23 to 58
58
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 80 to 84
160
Tensile Strength: Yield (Proof), MPa 23 to 57
80

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 640
620
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 230
130
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
34
Electrical Conductivity: Equal Weight (Specific), % IACS 200
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.7
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 25
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 3.8 to 24
47
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 8.2 to 8.6
17
Strength to Weight: Bending, points 15 to 16
25
Thermal Diffusivity, mm2/s 93
53
Thermal Shock Resistance, points 3.6 to 3.7
7.3

Alloy Composition

Aluminum (Al), % 99.35 to 100
94.5 to 97.5
Copper (Cu), % 0 to 0.050
0 to 0.050
Iron (Fe), % 0 to 0.65
0 to 0.55
Magnesium (Mg), % 0 to 0.050
2.5 to 3.5
Manganese (Mn), % 0 to 0.050
0 to 0.45
Silicon (Si), % 0 to 0.65
0 to 0.55
Titanium (Ti), % 0 to 0.060
0 to 0.2
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0
0 to 0.15