MakeItFrom.com
Menu (ESC)

1235 Aluminum vs. EN-MC21320 Magnesium

1235 aluminum belongs to the aluminum alloys classification, while EN-MC21320 magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 1235 aluminum and the bottom bar is EN-MC21320 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
45
Elongation at Break, % 28 to 34
7.5
Fatigue Strength, MPa 23 to 58
95
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
18
Shear Strength, MPa 52 to 56
130
Tensile Strength: Ultimate (UTS), MPa 80 to 84
230
Tensile Strength: Yield (Proof), MPa 23 to 57
140

Thermal Properties

Latent Heat of Fusion, J/g 400
370
Maximum Temperature: Mechanical, °C 170
110
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 640
530
Specific Heat Capacity, J/kg-K 900
1000
Thermal Conductivity, W/m-K 230
66
Thermal Expansion, µm/m-K 23
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
17
Electrical Conductivity: Equal Weight (Specific), % IACS 200
91

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
1.6
Embodied Carbon, kg CO2/kg material 8.3
23
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 1190
980

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 25
15
Resilience: Unit (Modulus of Resilience), kJ/m3 3.8 to 24
200
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
72
Strength to Weight: Axial, points 8.2 to 8.6
38
Strength to Weight: Bending, points 15 to 16
50
Thermal Diffusivity, mm2/s 93
40
Thermal Shock Resistance, points 3.6 to 3.7
13

Alloy Composition

Aluminum (Al), % 99.35 to 100
3.5 to 5.0
Copper (Cu), % 0 to 0.050
0 to 0.010
Iron (Fe), % 0 to 0.65
0 to 0.0050
Magnesium (Mg), % 0 to 0.050
92.5 to 95.9
Manganese (Mn), % 0 to 0.050
0.1 to 0.7
Nickel (Ni), % 0
0 to 0.0020
Silicon (Si), % 0 to 0.65
0.5 to 1.5
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.1
0 to 0.2
Residuals, % 0
0 to 0.010