MakeItFrom.com
Menu (ESC)

1235 Aluminum vs. C70700 Copper-nickel

1235 aluminum belongs to the aluminum alloys classification, while C70700 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1235 aluminum and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 28 to 34
39
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
46
Shear Strength, MPa 52 to 56
220
Tensile Strength: Ultimate (UTS), MPa 80 to 84
320
Tensile Strength: Yield (Proof), MPa 23 to 57
110

Thermal Properties

Latent Heat of Fusion, J/g 400
220
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 640
1120
Melting Onset (Solidus), °C 640
1060
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 230
59
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
11
Electrical Conductivity: Equal Weight (Specific), % IACS 200
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.3
3.4
Embodied Energy, MJ/kg 160
52
Embodied Water, L/kg 1190
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 25
100
Resilience: Unit (Modulus of Resilience), kJ/m3 3.8 to 24
51
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 8.2 to 8.6
10
Strength to Weight: Bending, points 15 to 16
12
Thermal Diffusivity, mm2/s 93
17
Thermal Shock Resistance, points 3.6 to 3.7
12

Alloy Composition

Aluminum (Al), % 99.35 to 100
0
Copper (Cu), % 0 to 0.050
88.5 to 90.5
Iron (Fe), % 0 to 0.65
0 to 0.050
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 0.5
Nickel (Ni), % 0
9.5 to 10.5
Silicon (Si), % 0 to 0.65
0
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5