MakeItFrom.com
Menu (ESC)

1350 Aluminum vs. 4007 Aluminum

Both 1350 aluminum and 4007 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 1350 aluminum and the bottom bar is 4007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 20 to 45
32 to 44
Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 1.4 to 30
5.1 to 23
Fatigue Strength, MPa 24 to 50
46 to 88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 44 to 110
80 to 90
Tensile Strength: Ultimate (UTS), MPa 68 to 190
130 to 160
Tensile Strength: Yield (Proof), MPa 25 to 170
50 to 120

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 660
650
Melting Onset (Solidus), °C 650
590
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 230
170
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61 to 62
42
Electrical Conductivity: Equal Weight (Specific), % IACS 200 to 210
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.3
8.1
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1200
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.77 to 54
7.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 4.4 to 200
18 to 110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
49
Strength to Weight: Axial, points 7.0 to 19
12 to 15
Strength to Weight: Bending, points 14 to 27
20 to 23
Thermal Diffusivity, mm2/s 96
67
Thermal Shock Resistance, points 3.0 to 8.2
5.5 to 6.7

Alloy Composition

Aluminum (Al), % 99.5 to 100
94.1 to 97.6
Boron (B), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.010
0.050 to 0.25
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0 to 0.050
0 to 0.2
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.4
0.4 to 1.0
Magnesium (Mg), % 0
0 to 0.2
Manganese (Mn), % 0 to 0.010
0.8 to 1.5
Nickel (Ni), % 0
0.15 to 0.7
Silicon (Si), % 0 to 0.1
1.0 to 1.7
Titanium (Ti), % 0 to 0.020
0 to 0.1
Vanadium (V), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.050
0 to 0.1
Residuals, % 0
0 to 0.15

Comparable Variants