MakeItFrom.com
Menu (ESC)

1350 Aluminum vs. ACI-ASTM CN7MS Steel

1350 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CN7MS steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1350 aluminum and the bottom bar is ACI-ASTM CN7MS steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 20 to 45
160
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.4 to 30
39
Fatigue Strength, MPa 24 to 50
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 68 to 190
540
Tensile Strength: Yield (Proof), MPa 25 to 170
230

Thermal Properties

Latent Heat of Fusion, J/g 400
340
Maximum Temperature: Mechanical, °C 170
1040
Melting Completion (Liquidus), °C 660
1400
Melting Onset (Solidus), °C 650
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
12
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
5.1
Embodied Energy, MJ/kg 160
71
Embodied Water, L/kg 1200
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.77 to 54
170
Resilience: Unit (Modulus of Resilience), kJ/m3 4.4 to 200
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 7.0 to 19
19
Strength to Weight: Bending, points 14 to 27
19
Thermal Diffusivity, mm2/s 96
3.2
Thermal Shock Resistance, points 3.0 to 8.2
13

Alloy Composition

Aluminum (Al), % 99.5 to 100
0
Boron (B), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.010
18 to 20
Copper (Cu), % 0 to 0.050
1.5 to 2.0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.4
45.4 to 53.5
Manganese (Mn), % 0 to 0.010
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
22 to 25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
2.5 to 3.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.020
0
Vanadium (V), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0