MakeItFrom.com
Menu (ESC)

1350 Aluminum vs. AISI 430 Stainless Steel

1350 aluminum belongs to the aluminum alloys classification, while AISI 430 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1350 aluminum and the bottom bar is AISI 430 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 20 to 45
160
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.4 to 30
24
Fatigue Strength, MPa 24 to 50
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 44 to 110
320
Tensile Strength: Ultimate (UTS), MPa 68 to 190
500
Tensile Strength: Yield (Proof), MPa 25 to 170
260

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 660
1510
Melting Onset (Solidus), °C 650
1430
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
25
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61 to 62
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 200 to 210
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.5
Calomel Potential, mV -740
-220
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.1
Embodied Energy, MJ/kg 160
30
Embodied Water, L/kg 1200
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.77 to 54
100
Resilience: Unit (Modulus of Resilience), kJ/m3 4.4 to 200
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 7.0 to 19
18
Strength to Weight: Bending, points 14 to 27
18
Thermal Diffusivity, mm2/s 96
6.7
Thermal Shock Resistance, points 3.0 to 8.2
18

Alloy Composition

Aluminum (Al), % 99.5 to 100
0
Boron (B), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.010
16 to 18
Copper (Cu), % 0 to 0.050
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.4
79.1 to 84
Manganese (Mn), % 0 to 0.010
0 to 1.0
Nickel (Ni), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.020
0
Vanadium (V), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0