MakeItFrom.com
Menu (ESC)

1350 Aluminum vs. AZ91A Magnesium

1350 aluminum belongs to the aluminum alloys classification, while AZ91A magnesium belongs to the magnesium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 1350 aluminum and the bottom bar is AZ91A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 20 to 45
63
Elastic (Young's, Tensile) Modulus, GPa 68
46
Elongation at Break, % 1.4 to 30
5.0
Fatigue Strength, MPa 24 to 50
99
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
18
Shear Strength, MPa 44 to 110
140
Tensile Strength: Ultimate (UTS), MPa 68 to 190
240
Tensile Strength: Yield (Proof), MPa 25 to 170
160

Thermal Properties

Latent Heat of Fusion, J/g 400
360
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 660
600
Melting Onset (Solidus), °C 650
470
Specific Heat Capacity, J/kg-K 900
990
Thermal Conductivity, W/m-K 230
73
Thermal Expansion, µm/m-K 24
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61 to 62
10
Electrical Conductivity: Equal Weight (Specific), % IACS 200 to 210
52

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
1.7
Embodied Carbon, kg CO2/kg material 8.3
22
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 1200
990

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.77 to 54
11
Resilience: Unit (Modulus of Resilience), kJ/m3 4.4 to 200
280
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
69
Strength to Weight: Axial, points 7.0 to 19
38
Strength to Weight: Bending, points 14 to 27
49
Thermal Diffusivity, mm2/s 96
42
Thermal Shock Resistance, points 3.0 to 8.2
14

Alloy Composition

Aluminum (Al), % 99.5 to 100
8.3 to 9.7
Boron (B), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.010
0
Copper (Cu), % 0 to 0.050
0 to 0.1
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.4
0
Magnesium (Mg), % 0
88.2 to 91.2
Manganese (Mn), % 0 to 0.010
0.13 to 0.5
Nickel (Ni), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 0.5
Titanium (Ti), % 0 to 0.020
0
Vanadium (V), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.050
0.35 to 1.0
Residuals, % 0 to 0.1
0