MakeItFrom.com
Menu (ESC)

1350 Aluminum vs. EN 2.4632 Nickel

1350 aluminum belongs to the aluminum alloys classification, while EN 2.4632 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1350 aluminum and the bottom bar is EN 2.4632 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.4 to 30
17
Fatigue Strength, MPa 24 to 50
430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
76
Shear Strength, MPa 44 to 110
770
Tensile Strength: Ultimate (UTS), MPa 68 to 190
1250
Tensile Strength: Yield (Proof), MPa 25 to 170
780

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 660
1340
Melting Onset (Solidus), °C 650
1290
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
13
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61 to 62
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 200 to 210
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.3
9.4
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 1200
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.77 to 54
180
Resilience: Unit (Modulus of Resilience), kJ/m3 4.4 to 200
1570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 7.0 to 19
42
Strength to Weight: Bending, points 14 to 27
31
Thermal Diffusivity, mm2/s 96
3.3
Thermal Shock Resistance, points 3.0 to 8.2
39

Alloy Composition

Aluminum (Al), % 99.5 to 100
1.0 to 2.0
Boron (B), % 0 to 0.050
0 to 0.020
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0 to 0.010
18 to 21
Cobalt (Co), % 0
15 to 21
Copper (Cu), % 0 to 0.050
0 to 0.2
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.4
0 to 1.5
Manganese (Mn), % 0 to 0.010
0 to 1.0
Nickel (Ni), % 0
49 to 64
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.020
2.0 to 3.0
Vanadium (V), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.050
0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.1
0