MakeItFrom.com
Menu (ESC)

1350 Aluminum vs. EN 2.4952 Nickel

1350 aluminum belongs to the aluminum alloys classification, while EN 2.4952 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1350 aluminum and the bottom bar is EN 2.4952 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.4 to 30
17
Fatigue Strength, MPa 24 to 50
370
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 44 to 110
700
Tensile Strength: Ultimate (UTS), MPa 68 to 190
1150
Tensile Strength: Yield (Proof), MPa 25 to 170
670

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 660
1350
Melting Onset (Solidus), °C 650
1300
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
12
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61 to 62
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 200 to 210
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.3
9.8
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1200
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.77 to 54
170
Resilience: Unit (Modulus of Resilience), kJ/m3 4.4 to 200
1180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 7.0 to 19
38
Strength to Weight: Bending, points 14 to 27
29
Thermal Diffusivity, mm2/s 96
3.1
Thermal Shock Resistance, points 3.0 to 8.2
33

Alloy Composition

Aluminum (Al), % 99.5 to 100
1.0 to 1.8
Boron (B), % 0 to 0.050
0 to 0.0080
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0 to 0.010
18 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.050
0 to 0.2
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.4
0 to 1.5
Manganese (Mn), % 0 to 0.010
0 to 1.0
Nickel (Ni), % 0
65 to 79.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.020
1.8 to 2.7
Vanadium (V), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0