MakeItFrom.com
Menu (ESC)

1350 Aluminum vs. Grade CX2M Nickel

1350 aluminum belongs to the aluminum alloys classification, while grade CX2M nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1350 aluminum and the bottom bar is grade CX2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
220
Elongation at Break, % 1.4 to 30
45
Fatigue Strength, MPa 24 to 50
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
84
Tensile Strength: Ultimate (UTS), MPa 68 to 190
550
Tensile Strength: Yield (Proof), MPa 25 to 170
310

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 660
1500
Melting Onset (Solidus), °C 650
1450
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 230
10
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.3
12
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 1200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.77 to 54
210
Resilience: Unit (Modulus of Resilience), kJ/m3 4.4 to 200
220
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 7.0 to 19
18
Strength to Weight: Bending, points 14 to 27
17
Thermal Diffusivity, mm2/s 96
2.7
Thermal Shock Resistance, points 3.0 to 8.2
15

Alloy Composition

Aluminum (Al), % 99.5 to 100
0
Boron (B), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.010
22 to 24
Copper (Cu), % 0 to 0.050
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.4
0 to 1.5
Manganese (Mn), % 0 to 0.010
0 to 1.0
Molybdenum (Mo), % 0
15 to 16.5
Nickel (Ni), % 0
56.4 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.020
0
Vanadium (V), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0