MakeItFrom.com
Menu (ESC)

1350 Aluminum vs. Nickel 601

1350 aluminum belongs to the aluminum alloys classification, while nickel 601 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1350 aluminum and the bottom bar is nickel 601.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.4 to 30
10 to 38
Fatigue Strength, MPa 24 to 50
220 to 380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 44 to 110
440 to 530
Tensile Strength: Ultimate (UTS), MPa 68 to 190
660 to 890
Tensile Strength: Yield (Proof), MPa 25 to 170
290 to 800

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 660
1410
Melting Onset (Solidus), °C 650
1360
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
11
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61 to 62
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 200 to 210
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
49
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 160
110
Embodied Water, L/kg 1200
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.77 to 54
86 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 4.4 to 200
210 to 1630
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 7.0 to 19
22 to 30
Strength to Weight: Bending, points 14 to 27
20 to 25
Thermal Diffusivity, mm2/s 96
2.8
Thermal Shock Resistance, points 3.0 to 8.2
17 to 23

Alloy Composition

Aluminum (Al), % 99.5 to 100
1.0 to 1.7
Boron (B), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.010
21 to 25
Copper (Cu), % 0 to 0.050
0 to 1.0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.4
7.7 to 20
Manganese (Mn), % 0 to 0.010
0 to 1.0
Nickel (Ni), % 0
58 to 63
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.020
0
Vanadium (V), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0

Comparable Variants