MakeItFrom.com
Menu (ESC)

1350 Aluminum vs. SAE-AISI 1020 Steel

1350 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1020 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1350 aluminum and the bottom bar is SAE-AISI 1020 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 20 to 45
120 to 130
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.4 to 30
17 to 28
Fatigue Strength, MPa 24 to 50
180 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 44 to 110
280
Tensile Strength: Ultimate (UTS), MPa 68 to 190
430 to 460
Tensile Strength: Yield (Proof), MPa 25 to 170
240 to 380

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 650
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
52
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61 to 62
11
Electrical Conductivity: Equal Weight (Specific), % IACS 200 to 210
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 160
18
Embodied Water, L/kg 1200
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.77 to 54
72 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 4.4 to 200
150 to 380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 7.0 to 19
15 to 16
Strength to Weight: Bending, points 14 to 27
16 to 17
Thermal Diffusivity, mm2/s 96
14
Thermal Shock Resistance, points 3.0 to 8.2
13 to 14

Alloy Composition

Aluminum (Al), % 99.5 to 100
0
Boron (B), % 0 to 0.050
0
Carbon (C), % 0
0.18 to 0.23
Chromium (Cr), % 0 to 0.010
0
Copper (Cu), % 0 to 0.050
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.4
99.08 to 99.52
Manganese (Mn), % 0 to 0.010
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.020
0
Vanadium (V), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0