MakeItFrom.com
Menu (ESC)

1350 Aluminum vs. C48200 Brass

1350 aluminum belongs to the aluminum alloys classification, while C48200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1350 aluminum and the bottom bar is C48200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
100
Elongation at Break, % 1.4 to 30
15 to 40
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Shear Strength, MPa 44 to 110
260 to 300
Tensile Strength: Ultimate (UTS), MPa 68 to 190
400 to 500
Tensile Strength: Yield (Proof), MPa 25 to 170
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 660
900
Melting Onset (Solidus), °C 650
890
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 230
120
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61 to 62
26
Electrical Conductivity: Equal Weight (Specific), % IACS 200 to 210
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 1200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.77 to 54
61 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 4.4 to 200
120 to 500
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 7.0 to 19
14 to 17
Strength to Weight: Bending, points 14 to 27
15 to 17
Thermal Diffusivity, mm2/s 96
38
Thermal Shock Resistance, points 3.0 to 8.2
13 to 16

Alloy Composition

Aluminum (Al), % 99.5 to 100
0
Boron (B), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.010
0
Copper (Cu), % 0 to 0.050
59 to 62
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.4
0 to 0.1
Lead (Pb), % 0
0.4 to 1.0
Manganese (Mn), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0
0.5 to 1.0
Titanium (Ti), % 0 to 0.020
0
Vanadium (V), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.050
35.5 to 40.1
Residuals, % 0
0 to 0.4