MakeItFrom.com
Menu (ESC)

1435 Aluminum vs. C443.0 Aluminum

Both 1435 aluminum and C443.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 1435 aluminum and the bottom bar is C443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 4.1 to 32
9.0
Fatigue Strength, MPa 27 to 49
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 54 to 87
130
Tensile Strength: Ultimate (UTS), MPa 81 to 150
230
Tensile Strength: Yield (Proof), MPa 23 to 130
100

Thermal Properties

Latent Heat of Fusion, J/g 400
470
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
630
Melting Onset (Solidus), °C 640
600
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 230
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
37
Electrical Conductivity: Equal Weight (Specific), % IACS 200
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.2
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 20
17
Resilience: Unit (Modulus of Resilience), kJ/m3 3.8 to 110
70
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 8.3 to 15
24
Strength to Weight: Bending, points 15 to 23
31
Thermal Diffusivity, mm2/s 93
58
Thermal Shock Resistance, points 3.6 to 6.7
10

Alloy Composition

Aluminum (Al), % 99.35 to 99.7
89.6 to 95.5
Copper (Cu), % 0 to 0.020
0 to 0.6
Iron (Fe), % 0.3 to 0.5
0 to 2.0
Magnesium (Mg), % 0 to 0.050
0 to 0.1
Manganese (Mn), % 0 to 0.050
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.15
4.5 to 6.0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 0 to 0.1
0 to 0.5
Residuals, % 0
0 to 0.25