MakeItFrom.com
Menu (ESC)

1435 Aluminum vs. Nickel 80A

1435 aluminum belongs to the aluminum alloys classification, while nickel 80A belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1435 aluminum and the bottom bar is nickel 80A.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 4.1 to 32
22
Fatigue Strength, MPa 27 to 49
430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 54 to 87
660
Tensile Strength: Ultimate (UTS), MPa 81 to 150
1040
Tensile Strength: Yield (Proof), MPa 23 to 130
710

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 650
1360
Melting Onset (Solidus), °C 640
1310
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 200
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
55
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.2
9.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1190
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 20
210
Resilience: Unit (Modulus of Resilience), kJ/m3 3.8 to 110
1300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 8.3 to 15
35
Strength to Weight: Bending, points 15 to 23
27
Thermal Diffusivity, mm2/s 93
2.9
Thermal Shock Resistance, points 3.6 to 6.7
31

Alloy Composition

Aluminum (Al), % 99.35 to 99.7
0.5 to 1.8
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0 to 0.020
0
Iron (Fe), % 0.3 to 0.5
0 to 3.0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Nickel (Ni), % 0
69.4 to 79.7
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.030
1.8 to 2.7
Zinc (Zn), % 0 to 0.1
0