MakeItFrom.com
Menu (ESC)

1435 Aluminum vs. C35000 Brass

1435 aluminum belongs to the aluminum alloys classification, while C35000 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1435 aluminum and the bottom bar is C35000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
100
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 81 to 150
340 to 650

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 650
920
Melting Onset (Solidus), °C 640
890
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 230
120
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
26
Electrical Conductivity: Equal Weight (Specific), % IACS 200
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
23
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1190
320

Common Calculations

Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 8.3 to 15
12 to 22
Strength to Weight: Bending, points 15 to 23
13 to 21
Thermal Diffusivity, mm2/s 93
37
Thermal Shock Resistance, points 3.6 to 6.7
11 to 22

Alloy Composition

Aluminum (Al), % 99.35 to 99.7
0
Copper (Cu), % 0 to 0.020
60 to 63
Iron (Fe), % 0.3 to 0.5
0 to 0.1
Lead (Pb), % 0
0.8 to 2.0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0
Silicon (Si), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 0 to 0.1
34.5 to 39.2
Residuals, % 0
0 to 0.4