MakeItFrom.com
Menu (ESC)

1435 Aluminum vs. C93800 Bronze

1435 aluminum belongs to the aluminum alloys classification, while C93800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1435 aluminum and the bottom bar is C93800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
96
Elongation at Break, % 4.1 to 32
9.7
Poisson's Ratio 0.33
0.35
Shear Modulus, GPa 26
35
Tensile Strength: Ultimate (UTS), MPa 81 to 150
200
Tensile Strength: Yield (Proof), MPa 23 to 130
120

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 170
140
Melting Completion (Liquidus), °C 650
940
Melting Onset (Solidus), °C 640
850
Specific Heat Capacity, J/kg-K 900
340
Thermal Conductivity, W/m-K 230
52
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
11
Electrical Conductivity: Equal Weight (Specific), % IACS 200
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
31
Density, g/cm3 2.7
9.1
Embodied Carbon, kg CO2/kg material 8.2
3.2
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1190
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 20
17
Resilience: Unit (Modulus of Resilience), kJ/m3 3.8 to 110
70
Stiffness to Weight: Axial, points 14
5.9
Stiffness to Weight: Bending, points 50
17
Strength to Weight: Axial, points 8.3 to 15
6.1
Strength to Weight: Bending, points 15 to 23
8.4
Thermal Diffusivity, mm2/s 93
17
Thermal Shock Resistance, points 3.6 to 6.7
8.1

Alloy Composition

Aluminum (Al), % 99.35 to 99.7
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Copper (Cu), % 0 to 0.020
75 to 79
Iron (Fe), % 0.3 to 0.5
0 to 0.15
Lead (Pb), % 0
13 to 16
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.15
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
6.3 to 7.5
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 0 to 0.1
0 to 0.8
Residuals, % 0
0 to 1.0