MakeItFrom.com
Menu (ESC)

1435 Aluminum vs. R30016 Cobalt

1435 aluminum belongs to the aluminum alloys classification, while R30016 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1435 aluminum and the bottom bar is R30016 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
220
Elongation at Break, % 4.1 to 32
8.4
Fatigue Strength, MPa 27 to 49
290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
85
Tensile Strength: Ultimate (UTS), MPa 81 to 150
1010
Tensile Strength: Yield (Proof), MPa 23 to 130
580

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Melting Completion (Liquidus), °C 650
1360
Melting Onset (Solidus), °C 640
1270
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 230
15
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 200
2.0

Otherwise Unclassified Properties

Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.2
7.7
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1190
500

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 20
72
Resilience: Unit (Modulus of Resilience), kJ/m3 3.8 to 110
770
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 8.3 to 15
33
Strength to Weight: Bending, points 15 to 23
26
Thermal Diffusivity, mm2/s 93
3.9
Thermal Shock Resistance, points 3.6 to 6.7
24

Alloy Composition

Aluminum (Al), % 99.35 to 99.7
0
Carbon (C), % 0
0.9 to 1.4
Chromium (Cr), % 0
28 to 32
Cobalt (Co), % 0
49.6 to 66.9
Copper (Cu), % 0 to 0.020
0
Iron (Fe), % 0.3 to 0.5
0 to 3.0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0.5 to 2.0
Molybdenum (Mo), % 0
0 to 1.5
Nickel (Ni), % 0
0 to 3.0
Silicon (Si), % 0 to 0.15
0.2 to 2.0
Titanium (Ti), % 0 to 0.030
0
Tungsten (W), % 0
3.5 to 5.5
Zinc (Zn), % 0 to 0.1
0