MakeItFrom.com
Menu (ESC)

1435 Aluminum vs. S44537 Stainless Steel

1435 aluminum belongs to the aluminum alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1435 aluminum and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 4.1 to 32
21
Fatigue Strength, MPa 27 to 49
230
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Shear Strength, MPa 54 to 87
320
Tensile Strength: Ultimate (UTS), MPa 81 to 150
510
Tensile Strength: Yield (Proof), MPa 23 to 130
360

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 650
1480
Melting Onset (Solidus), °C 640
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
21
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 200
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
19
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.2
3.4
Embodied Energy, MJ/kg 150
50
Embodied Water, L/kg 1190
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 20
95
Resilience: Unit (Modulus of Resilience), kJ/m3 3.8 to 110
320
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 8.3 to 15
18
Strength to Weight: Bending, points 15 to 23
18
Thermal Diffusivity, mm2/s 93
5.6
Thermal Shock Resistance, points 3.6 to 6.7
17

Alloy Composition

Aluminum (Al), % 99.35 to 99.7
0 to 0.1
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 0 to 0.020
0 to 0.5
Iron (Fe), % 0.3 to 0.5
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 0.8
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.15
0.1 to 0.6
Sulfur (S), % 0
0 to 0.0060
Titanium (Ti), % 0 to 0.030
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 0 to 0.1
0