MakeItFrom.com
Menu (ESC)

2007 Aluminum vs. A444.0 Aluminum

Both 2007 aluminum and A444.0 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2007 aluminum and the bottom bar is A444.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 5.6 to 8.0
18
Fatigue Strength, MPa 91 to 110
37
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 370 to 420
160
Tensile Strength: Yield (Proof), MPa 240 to 270
66

Thermal Properties

Latent Heat of Fusion, J/g 390
500
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 510
590
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 130
160
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
41
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.1
2.6
Embodied Carbon, kg CO2/kg material 8.0
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
24
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
31
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 44
53
Strength to Weight: Axial, points 33 to 38
17
Strength to Weight: Bending, points 37 to 40
25
Thermal Diffusivity, mm2/s 48
68
Thermal Shock Resistance, points 16 to 19
7.3

Alloy Composition

Aluminum (Al), % 87.5 to 95
91.6 to 93.5
Bismuth (Bi), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.3 to 4.6
0 to 0.1
Iron (Fe), % 0 to 0.8
0 to 0.2
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.4 to 1.8
0 to 0.050
Manganese (Mn), % 0.5 to 1.0
0 to 0.1
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 0 to 0.8
6.5 to 7.5
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.8
0 to 0.1
Residuals, % 0
0 to 0.15