MakeItFrom.com
Menu (ESC)

2007 Aluminum vs. ACI-ASTM CA40 Steel

2007 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA40 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2007 aluminum and the bottom bar is ACI-ASTM CA40 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.6 to 8.0
10
Fatigue Strength, MPa 91 to 110
460
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 370 to 420
910
Tensile Strength: Yield (Proof), MPa 240 to 270
860

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 190
750
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 510
1500
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130
25
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.5
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1130
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
89
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
1910
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 33 to 38
33
Strength to Weight: Bending, points 37 to 40
27
Thermal Diffusivity, mm2/s 48
6.7
Thermal Shock Resistance, points 16 to 19
33

Alloy Composition

Aluminum (Al), % 87.5 to 95
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0 to 0.1
11.5 to 14
Copper (Cu), % 3.3 to 4.6
0
Iron (Fe), % 0 to 0.8
81.5 to 88.3
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.4 to 1.8
0
Manganese (Mn), % 0.5 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.2
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.3
0