MakeItFrom.com
Menu (ESC)

2007 Aluminum vs. ACI-ASTM CK35MN Steel

2007 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CK35MN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2007 aluminum and the bottom bar is ACI-ASTM CK35MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 5.6 to 8.0
40
Fatigue Strength, MPa 91 to 110
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 370 to 420
650
Tensile Strength: Yield (Proof), MPa 240 to 270
310

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 11
31
Density, g/cm3 3.1
8.0
Embodied Carbon, kg CO2/kg material 8.0
5.9
Embodied Energy, MJ/kg 150
81
Embodied Water, L/kg 1130
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
210
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 33 to 38
22
Strength to Weight: Bending, points 37 to 40
21
Thermal Diffusivity, mm2/s 48
3.3
Thermal Shock Resistance, points 16 to 19
14

Alloy Composition

Aluminum (Al), % 87.5 to 95
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0 to 0.1
22 to 24
Copper (Cu), % 3.3 to 4.6
0 to 0.4
Iron (Fe), % 0 to 0.8
43.4 to 51.8
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.4 to 1.8
0
Manganese (Mn), % 0.5 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 6.8
Nickel (Ni), % 0 to 0.2
20 to 22
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.3
0