MakeItFrom.com
Menu (ESC)

2007 Aluminum vs. ACI-ASTM CT15C Steel

2007 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CT15C steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2007 aluminum and the bottom bar is ACI-ASTM CT15C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.6 to 8.0
23
Fatigue Strength, MPa 91 to 110
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 370 to 420
500
Tensile Strength: Yield (Proof), MPa 240 to 270
190

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 190
1080
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 510
1360
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 3.1
8.0
Embodied Carbon, kg CO2/kg material 8.0
6.1
Embodied Energy, MJ/kg 150
88
Embodied Water, L/kg 1130
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
90
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
93
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 33 to 38
17
Strength to Weight: Bending, points 37 to 40
17
Thermal Diffusivity, mm2/s 48
3.2
Thermal Shock Resistance, points 16 to 19
12

Alloy Composition

Aluminum (Al), % 87.5 to 95
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.1
19 to 21
Copper (Cu), % 3.3 to 4.6
0
Iron (Fe), % 0 to 0.8
40.3 to 49.2
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.4 to 1.8
0
Manganese (Mn), % 0.5 to 1.0
0.15 to 1.5
Nickel (Ni), % 0 to 0.2
31 to 34
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.8
0.15 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.3
0