MakeItFrom.com
Menu (ESC)

2007 Aluminum vs. AISI 201L Stainless Steel

2007 aluminum belongs to the aluminum alloys classification, while AISI 201L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2007 aluminum and the bottom bar is AISI 201L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.6 to 8.0
22 to 46
Fatigue Strength, MPa 91 to 110
270 to 530
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 220 to 250
520 to 660
Tensile Strength: Ultimate (UTS), MPa 370 to 420
740 to 1040
Tensile Strength: Yield (Proof), MPa 240 to 270
290 to 790

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 190
880
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 510
1370
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1130
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
220 to 1570
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 33 to 38
27 to 37
Strength to Weight: Bending, points 37 to 40
24 to 30
Thermal Diffusivity, mm2/s 48
4.0
Thermal Shock Resistance, points 16 to 19
16 to 23

Alloy Composition

Aluminum (Al), % 87.5 to 95
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
16 to 18
Copper (Cu), % 3.3 to 4.6
0
Iron (Fe), % 0 to 0.8
67.9 to 75
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.4 to 1.8
0
Manganese (Mn), % 0.5 to 1.0
5.5 to 7.5
Nickel (Ni), % 0 to 0.2
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.8
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.3
0